
EECS2101 Fundamentals of Data Structures

Lecture Notes

Winter 2025 (Section Z)

Jackie Wang

Lecture 1 - January 7

Syllabus
Introduction to the Course

Solving Problems via Data Structures

Course Learning Outcomes (CLOs)

General Tips about Success

Source: https://a.co/d/aQ13fR1

Lecture 2 - January 9

Introduction to the Course
Recursion: Part 1

Solving Problems via Data Structures
References to Recursion Basics
More Advanced Recursion: splitArray

Announcements/Reminders

• Assignment 1 to be released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Trial attendance check via iClicker today!

A Searching Problem

Program Optimization Problem

Program Translation Problem

Solving a Problem Recursively

Given a small problem: Solve it directly:

Given a big problem:

Divide it into smaller problems:

Assume solutions to smaller problems:

Combine solutions to smaller problems:

Say a1 = {}, consider m(a1, 0, a1.length - 1)

Say a2 = {A, B, C}, consider m(a2, 0, a2.length - 1)

Recursion on an Array: Passing Same Array Reference

Problem on Recursion https://codingbat.com/prob/p185204

Lecture 3 - January 14

Recursion: Part 1

splitArray: Implementation and Tracing

Announcements/Reminders

• Assignment 1 release
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Contact Information of TAs on common eClass site

Problem on Recursion https://codingbat.com/prob/p185204

splitArray: Java Implementation

splitArray: Tracing (1)

splitArray: Tracing (2)

splitArray: Tracing (3)

splitArray: Tracing (3) input

Lecture 4 - January 16

Asymptotic Analysis of Algorithms

Limitations of Experiments
Primitive Operations (POs)
Counting POs: findMax

Announcements/Reminders

• Assignment 1 released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Contact Information of TAs on common eClass site
• splitArrayHarder: an extended version coming soon

Example Experiment

Example 1: Counting Number of Primitive Operations

Q. # of times i < n in Line 3 is executed?

Q. # of times loop body (Lines 4 to 6) is executed?

Lecture 5 - January 21

Asymptotic Analysis of Algorithms

From Absolute RT to Relative RT
Approximating RT Functions
Asymptotic Upper Bound (Big-O): Def.

Announcements/Reminders

• Assignment 1 released
• splitArrayHarder: an extended version released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Contact Information of TAs on common eClass site

Example 2: Counting Number of Primitive Operations

Q. # of times Line 3 is executed?

Q. # of times loop body (Lines 4 to 8) is executed?

Q. # of POs in the loop body (Lines 4 to 8)?

Comparing Algorithms: From Absolute RT to Relative RT

Exercise: Approximating f(n) = 7n + 2n · log n + 3n²

RT Functions: Rates of Growth (w.r.t. Input Sizes)

Comparing Relative, Asymptotic RTs of Algorithms

Q1. Compare:
RT1(n) = 3n² + 7n + 18
RT2(n) = 100n² + 3n - 100

Q2: Compare:
RT1(n) = n³ + 7n + 18
RT2(n) = 100n² + 100n + 2000

Asymptotic Upper Bound: Big-O Example:
f(n) = 8n + 5
g(n) = n

Prove:
f(n) is O(g(n))

Choose c = 9.
What about n0?

Proving f(n) is O(g(n))

Lecture 6 - January 23

Asymptotic Analysis of Algorithms

Big-O: Pred. Def., Properties, Examples
Correct vs. Accurate Asymptotic U.B.
Deriving U.B. from Code: Basic Examples

Announcements/Reminders

• Assignment 1 due next Monday
• splitArrayHarder: an extended version released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Contact Information of TAs on common eClass site

Asymptotic Upper Bound: Example

g(n) = n

f(n) = 8n + 59 * g(n) = 9n

5

45

5

Q. Formulate the definition of “f(n) is order of O(g(n))”
using logical operator(s): ¬, ∧, ∨, ⇒, ∀, ∃

Known:

Asymptotic Upper Bound (Big-O): Alternative Formulation

Proving f(n) is O(g(n))

Exercise: Prove f(n) = 5n⁴ - 3n³ + 2n² - 4n + 1 is O(n⁴)

Big-O Properties (1): Members in a Family

Each member f(n) in O(g(n)) is such that:
 Higest Power of f(n) <= Highest Power of g(n)

O(n) O(n²) Functions: Rates of Growth

Big-O Properties (2): Relating Families

Big-O Properties (3): Deciding Correct & Accurate Bound

Asymptotic Upper Bounds: Example (1)

Given f(n) = 5n² + 3n · log n + 2n + 5:
(1) What is f(n)’s most accurate asymptotic upper bound.
(2) Prove your claim.

Asymptotic Upper Bounds: Example (2)

Given f(n) = 20n³ + 10n · log n + 5:
(1) What is f(n)’s most accurate asymptotic upper bound.
(2) Prove your claim.

Asymptotic Upper Bounds: Example (3)

Given f(n) = 3 · log n + 2:
(1) What is f(n)’s most accurate asymptotic upper bound.
(2) Prove your claim.

Asymptotic Upper Bounds: Example (4)

Given f(n) = :
(1) What is f(n)’s most accurate asymptotic upper bound.
(2) Prove your claim.

Asymptotic Upper Bounds: Example (5)

Given f(n) = 2n + 100 · log n:
(1) What is f(n)’s most accurate asymptotic upper bound.
(2) Prove your claim.

Determining the Asymptotic Upper Bound (1)

Determining the Asymptotic Upper Bound (2)

Lecture 7 - January 28

Asymptotic Analysis of Algorithms,
Arrays and Linked Lists

Deriving Upper Bounds from Code
Inserting into an Array
Sorting Orders

Announcements/Reminders

• Assignment 1 solution to be released soon
• splitArrayHarder: an extended version released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Contact Information of TAs on common eClass site

Determining the Asymptotic Upper Bound (3.1)

Determining the Asymptotic Upper Bound (3.2)

Determining the Asymptotic Upper Bound (4)

Determining the Asymptotic Upper Bound (5)

Asymptotic Upper Bound: Arithmetic Sequence/Progression

Inserting into an Array

Example:
insertAt({alan, mark, tom}, 3, jim, 0)

0 1 2a

result 0 1 2 3

Example:
insertAt({alan, mark, tom}, 3, jim, 1)

0 1 2a

result 0 1 2 3

Exercise: insertAt({alan, mark, tom}, 3, jim, 3)

Sorting Orders of Arrays

non-descending

i (index)

a[i] (value)

0 1 2 3 4

a

decreasing/descending

i (index)

a[i] (value)

0 1 2 3 4

a

0 a.length - 1i j

a

i (index)

a[i] (value)

0 1 2 3 4

a

increasing/ascending

i (index)

a[i] (value)

0 1 2 3 4

a

non-ascending

Lecture 8 - January 30

Arrays and Linked Lists

Exercise: Relating Sorting Orders
Selection vs. Insertion Sorts
Singly-Linked List: Quick, Visual Intro.

Announcements/Reminders

• Assignment 1 solution released
• splitArrayHarder: an extended version released
• Lecture notes template available
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Contact Information of TAs on common eClass site

Sorting Orders of Arrays

non-descending

i (index)

a[i] (value)

0 1 2 3 4

a

decreasing/descending

i (index)

a[i] (value)

0 1 2 3 4

a

0 a.length - 1i j

a

i (index)

a[i] (value)

0 1 2 3 4

a

increasing/ascending

i (index)

a[i] (value)

0 1 2 3 4

a

non-ascending

Exercise: Relating Sets of Sorted Arrays

Q. Consider the following two sets:
• S1: all arrays sorted in a non-descending order
• S2: all arrays sorted in an ascending order.
Formulate the relation between these two sets.

Selection Sort

0 1 2 3

Keep selecting minimum from the unsorted portion
and appending it to the end of sorted portion.

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

Insertion Sort

0 1 2 3

Keep getting 1st element from the unsorted portion
and inserting it to the sorted portion.

0 1 2 3

0 1 2 3

0 1 2 3

Selection Sort: Deriving Asymptotic Upper Bound

Insertion Sort: Deriving Asymptotic Upper Bound

Selection Sort in Java

0 1 2 3a

i inner loop: j from ? to ? midIndex at L6 after L6 - L8, a becomes?

Outer Loop:
At the end of each iteration
of the for-loop,
a is sorted from a[0] to a[i].

Inner Loop: select the next min from a[i] to a[n - 1]
and put it to the end of the sorted region.

0 1 2 3a

0 1 2 3a

Insertion Sort in Java

i current after L3 j at L8 after L8, a becomes?

0 1 2 3a

Outer Loop:
At the end of each iteration
of the for-loop,
a is sorted from a[0] to a[i].

Inner Loop: find out where to insert current into
a[0] to a[i] s.t. that part of a becomes sorted.

0 1 2 3a

0 1 2 3a

0 1 2 3a

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

Exercise: Selection Sort vs. Insertion Sort

Singly-Linked Lists (SLL): Visual Introduction

- A chain of connected nodes (via aliasing)
- Each node contains:
 + reference to a data object
 + reference to the next node
- Head vs. Tail
- The chain may grow or shrink dynamically.
- Accessing a position in a linear collection:

+ Array uses absolute indexing: O(1)
+ SLL uses relative positioning: O(n)

Lecture 9 - February 4

Arrays and Linked Lists

Q: Mixing Insertion & Selection Sorts
SLL: Visual Introduction & Operations
SLL in Java: Node vs. SinglyLinkedList

Announcements/Reminders

• Assignment 2 (on SLL) to be released soon
• Assignment 1 solution released
• splitArrayHarder: an extended version released
• Lecture notes template available
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Contact Information of TAs on common eClass site

Exercise: Mixing the “Best” from both Sorts?
Recall:
• In insertion sort, costs of insertions are increasing.
• In selection sort, costs of selections are decreasing.
Idea:
• Perform insertion sort until half of the input is sorted.
• Perform selection sort to finish sorting the remaining half.
Q: Will this “new” algorithm perform better than O(n²)?

Singly-Linked Lists (SLL): Visual Introduction

- A chain of connected nodes (via aliasing)
- Each node contains:
 + reference to a data object
 + reference to the next node
- Head vs. Tail
- Accessing a position in a linear collection:

+ Array uses absolute indexing: O(1)
+ SLL uses relative positioning: O(n)

- The chain may grow or shrink dynamically.

A SLL Grows or Shrinks Dynamically

e.g., Inserting TOR/VAN/MON to the beginning/middle/end.

e.g., Removing LAX/ATL/BOS from the beginning/middle/end.

Runtime

Implementing SLL in Java: SinglyLinkedList vs. Node

SLL: Constructing a Chain of Nodes

Approach 1

Lecture 10 - February 6

Arrays and Linked Lists

SLL: List Constructions
SLL: getSize and getTail
Trading Space for Time: tail and size
SLL: addFirst

Announcements/Reminders

• Assignment 2 (on SLL) released
+ Required studies: Generics in Java (Slides 33 — 36)
+ Recommended studies: extra SLL problems

• Assignment 1 solution released
• splitArrayHarder: an extended version released
• Lecture notes template available
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Contact Information of TAs on common eClass site

Exercise: Mixing the “Best” from both Sorts?
Recall:
• In insertion sort, costs of insertions are increasing.
• In selection sort, costs of selections are decreasing.
Idea:
• Perform insertion sort until half of the input is sorted.
• Perform selection sort to finish sorting the remaining half.
Q: Will this “new” algorithm perform better than O(n²)?

SLL: Constructing a Chain of Nodes

Approach 1

SLL: Constructing a Chain of Nodes

Approach 2

Approach 1

SLL: Setting a List’s Head to a Chain of Nodes

Approach 2

SLL: Setting a List’s Head to a Chain of Nodes

Trace: list.getSize()
current current != null End of Iteration size

SLL Operation: Counting the Number of Nodes

Trace: list.getTail()
current current != null End of Iteration tail

SLL Operation: Finding the Tail of the List

SLL: Trading Space for Time

SLL Operation: Inserting to the Front of the List
Q. Does tail or size need to be updated?

Tutorial

Recursion Problem: splitArrayHarder

Coding in Java
Tracing
Exercises

Problem on Recursion
A useful extension to the original `splitArray` problem:

+ Return an ArrayList of size 2:
+ If a split of equal sums (assumed to be unique) is possible:
 * index 0 of the returned list stores ArrayList of integers representing group 1.
 * index 1 of the returned list stores ArrayList of integers representing group 2.
+ If a split is not possible, both indices store empty lists.

e.g., splitArrayHarder({2, 2}) → <<2>, <2>>
e.g., splitArrayHarder({2, 3}) → <<>, <>>
e.g., splitArrayHarder({5, 2, 3}) → <<5>, <2, 3>>
e.g., splitArrayHarder({5, 2, 2}) → <<>, <>>

https://www.eecs.yorku.ca/~wangcw/teaching/lectures/
2025/W/EECS2101/exercises/EECS2101-W25-
Problem-Recursion-splitArray-Spec.pdf

splitArrayHarder: Java Implementation

splitArrayHarder: Tracing

sAH({5, 2, 3}, 0, …)

sAH({5, 2, 3}, 1, …) sAH({5, 2, 3}, 1, …)

sAH({5, 2, 3}, 2, …) sAH({5, 2, 3}, 2, …) sAH({5, 2, 3}, 2, …) sAH({5, 2, 3}, 2, …)

sAH({5, 2, 3}, 3, …)

sAH({5, 2, 3}, 3, …)

sAH({5, 2, 3}, 3, …)

sAH({5, 2, 3}, 3, …)

sAH({5, 2, 3}, 3, …)

sAH({5, 2, 3}, 3, …)

sAH({5, 2, 3}, 3, …)

sAH({5, 2, 3}, 3, …)

Lecture 11 - February 11

Arrays and Linked Lists

SLL: removeFirst, addLast
SLL: getNodeAt, insertAt, removeLast
Exercises: insertAfter, insertBefore

Announcements/Reminders

• ProgTest1 guide & example questions to be released
• splitArrayHarder: solution and tutorial video released
• Assignment 2 (on SLL) released
+ Required studies: Generics in Java (Slides 33 — 36)
+ Recommended studies: extra SLL problems

• Assignment 1 solution released
• Lecture notes template, Office Hours, TA Contact

Approach 3
Q. Given: SinglyLinkedList list = new SinglyLinkedList();
Write a single line of Java code to construct the above chain.

SLL: Setting a List’s Head to a Chain of Nodes

SLL Operation (sketch): Removing the First Node

void removeFirst()

Boundary Cases?

size

tail

General Cases?

SLL Operation (sketch): Adding a Last Node

void addLast(String e)

Boundary Cases?

size

tail

General Cases?

Trace: list.getNodeAt(2)
current index index < 2 Start of Iteration

SLL Operation: Accessing the Middle of the List

Q. Does tail or size need to be updated?

size

tail

Idea of Inserting a Node at index i

Case: addAt(i, e), where 0 < i ≤ size

SLL Operation: Inserting to the Middle of the List

size

tail

Q. Does tail or size need to be updated?

SLL Operation: Removing the End of the List

Q. Does tail or size need to be updated?

Exercises: insertAfter vs. insertBefore

Case: insertAfter(Node n, String e)

Case: insertBefore(Node n, String e)

Lecture 12 - February 13

Arrays and Linked Lists

DLL: Introduction
DLL in Java: Node vs. Doubly-Linked Lists
DLL in Java: addBetween, remove

Announcements/Reminders

• ProgTest1 guide & example questions released
• In-person Office Hours during RW to be announced
• splitArrayHarder: solution and tutorial video released
• Assignment 2 (on SLL) released
+ Required studies: Generics in Java (Slides 33 — 36)
+ Recommended studies: extra SLL problems

• Assignment 1 solution released
• Lecture notes template, TA Contact

Exercises: insertAfter vs. insertBefore

Case: insertAfter(Node n, String e)

Case: insertBefore(Node n, String e)

Running Time: Arrays vs. Singly-Linked Lists

0 1 2
a “Alan” “Mark” “Tom”

Doubly-Linked Lists (DLL): Visual Introduction

- A chain of bi-directionally connected nodes
- Each node contains:
 + reference to a data object
 + reference to the next node
 + reference to the previous node
- A DLL is also a SLL:

+ many methods implemented the same way
 + some method implemented more efficiently
- Each DLL stores dedicated Header & Trailer Nodes
 (no head refeference and no tail reference)
- The chain may grow or shrink dynamically.
- Accessing a node in a DLL (via next or prev):
 + Relative positioning: O(n)

Empty Lists: SLLs vs. DLLs

DLLs: Relative Positioning

Generic DLL in Java: DoublyLinkedList vs. Node
Node<String>
element
next

prev

Node<String>
element
next

prev

Node<String>
element
next

prev

Generic DLL in Java: Inserting between Nodes

Node<E>
element
next

prev

Node<E>
element
next

prev

pred
succ

Node<E>
element
next

prev

e

Assumption: pred and succ are directly connected.

Node<E>
element
next

prev

Generic DLL in Java: Inserting to the Front/End

Node<String>
element
next

prev

DLL<String>
size

header
trailer

Node<String>
element
next

prev

Node<String>
element
next

prev

Node<String>
element
next

prev

Generic DLL in Java: Inserting to the Middle
Node<String>
element
next

prev

Notes.
 + getNodeAt(-1) returns the header
 + getNodeAt(size) returns the trailer

DLL<String>
size

header
trailer

Node<String>
element
next

prev

Node<String>
element
next

prev

Generic DLL in Java: Removing a Node

Node<E>
element
next

prev

Assumption: node exists in some DLL.
Node<E>

element
next

prev

Node<E>
element
next

prev

node

Generic DLL in Java: Removing from the Front/End

Node<E>
element
next

prev

Node<E>
element
next

prev

Node<E>
element
next

prev

null
header

null

Alan Mark Node<E>
element
next

prev

null

null
trailer

Node<E>
element
next

prev

Node<E>
element
next

prev

Node<E>
element
next

prev

null
header

null

Alan Mark Node<E>
element
next

prev

null

null
trailer

Generic DLL in Java: Removing from the Middle

Node<E>
element
next

prev

Node<E>
element
next

prev

Node<E>
element
next

prev

null
header

null

Tom Alan Node<E>
element
next

prev

null

null
trailer

Node<E>
element
next

prev

Mark

Lecture 13 - February 25

General Trees

Linear vs. Non-Linear Structures
General Trees: Terminology
Generic TreeNode in Java

Announcements/Reminders

• Survey on Makeup Lecture for ProgTest1
• Assignment 3 (on linked Trees) to be released
• ProgTest2 (on linked Trees) to be released
• This week’s office hour: 3pm, Wed

Running Time: Arrays vs. SLL vs. DLL

0 1 2
a “Alan” “Mark” “Tom”

Node<E>
element
next

prev

Node<E>
element
next

prev

Node<E>
element
next

prev

null
header

null

Alan Mark Node<E>
element
next

prev

null

null
trailer

Node<E>
element
next

prev

Tom

Linear vs. Non-Linear Structures

0 1 2
a “Alan” “Mark” “Tom”

Node<E>
element
next

prev

Node<E>
element
next

prev

Node<E>
element
next

prev

null
header

null

Alan Mark Node<E>
element
next

prev

null

null
trailer

Node<E>
element
next

prev

Tom

- root
- parent
- children
- ancestors
- descendants
- siblings

General Trees: Terminology (1)

- subtree

General Trees: Terminology (2)

- external nodes
- internal nodes

General Trees: Terminology (3)

- edge
- path
- depth
- height

General Trees: Terminology (4)

Generic, General Tree Nodes

Compare:
+ prev ref.

 + next ref.
in a DLN.

Lecture 14 - March 4

General Trees, Binary Trees

Initializing a Generic Array
Recursive Definitions of (Binary) Trees
Trees in Java: Construction, Depth

Announcements/Reminders

• ProgTest1 results to be released by Friday, Mar 14
• Makeup Lecture (on ADTs, Stacks) posted
• WrittenTest guide and example questions to be release
• Assignment 3 (on linked Trees) to be released
• Lecture notes template, Office Hours, TA Contact

General Trees: Recursive Definition

- root
- size

General Trees: Ordered vs. Unordered Trees

Generic, General Tree Nodes

Compare:
+ prev ref.

 + next ref.
in a DLN.

TN<S>
parent
element
children

Instantiating Generic Structures in Java
class ArrayStack<E> {
 private E[] data;
 …
 public ArrayStack<E>() {

 }
}

class TreeNode<E> {
 private TreeNode<E>[] children;
 …
 public TreeNode<E>() {

 }
}

Tracing: Constructing a Tree

TN<S>
parent
element
children

TN<S>
parent
element
children

TN<S>
parent
element
children

Tracing: Computing a Node’s Depth

depth(vanessa)

Binary Trees: Recursive Definition

- root
- size

Deriving the Sum of a Geometric Sequence

Initial Term: I
Common Factor: r
Number of Terms: k

Lecture 15 - March 6

Binary Trees

Binary Trees: Math Properties
Tree Traversals

Announcements/Reminders

• Assignment 3 (on linked Trees) released
• WrittenTest
+ guide released
+ example questions to be release

• Makeup Lecture (on ADTs, Stacks) posted
• Lecture notes template, Office Hours, TA Contact

Tracing: Computing a Tree’s Height

height(chris)

BT Terminology: LST vs. RST

Strategy of Recursion on BT:
+ Do something on root
+ Recur on LST
+ Recur on RST

e.g.,
+ counting size

BT Terminology: LST vs. RST

Strategy of Recursion on BT:
+ Do something on root
+ Recur on LST
+ Recur on RST

e.g.,
+ searching item

BT Terminology: Depths, Levels, Max # of Nodes

BT Terminology: Complete vs. Full BTs

h - 2

h = 3 h = 3

h - 1
h h

Min # nodes?
Max # nodes?

Min # nodes?
Max # nodes?

BT Properties: Bounding # of Nodes

For example, say h = 3

Minimum # of nodes Maximum # of nodes

BT Properties: Bounding Height of Tree

For example, say n = 7

Minimum height Maximum height

General Tree Traversals: Pre-Order vs. Post-Order

Pre-Order Traversal
from the Root

Post-Order Traversal
from the Root

Binary Tree Traversals
Pre-Order Traversal

Post-Order Traversal

In-Order Traversal

Review Q & A - Mar. 10

Written Test

Asymptotic Analysis
Instantiating Generics

Lecture 16 - March 11

Binary Trees, Binary Search

Bounding Internal vs. External Nodes
Proper Binary Trees
Binary Search: Ideas, Java

Announcements/Reminders

• Assignment 3 (on linked Trees) released
• WrittenTest guide & example questions released
• WrittenTest review session materials posted
• Makeup Lecture (on ADTs, Stacks) posted
• Lecture notes template, Office Hours, TA Contact

For example, say h = 3

BT Properties: Bounding # of External Nodes

Minimum # of
External Nodes

Maximum # of
External Nodes

For example, say h = 3

BT Properties: Bounding # of Internal Nodes

Minimum # of
Internal Nodes

Maximum # of
Internal Nodes

BT Properties: Relating #s of Ext. and Int. Nodes
Induction on Size of Proper BT

Applications of Binary Trees: Infix Notation

Q. Is the binary tree necessarily proper?

Binary Tree Traversals
Pre-Order Traversal

Post-Order Traversal

In-Order Traversal

Binary Search: Ideas

Precondition: Array sorted in non-descending order

a

a.len
gth

- 1

(a.len
gth

- 1)/
2

0

Search: Does key k exist in array a?

Binary Search in Java

sorted
from middle to

Lecture 17 - March 18

Binary Search, Merge Sort

Binary Search: Tracing, Running Time
MergeSort: Ideas, Java, Tracing

Announcements/Reminders

• Assignment 3 (on linked Trees) solution released
• WrittenTest and ProgTest1 results & feedback released
• ProgTest2 guide & example questions to be released
• Makeup Lecture (on Queues) posted
• Lecture notes template, Office Hours, TA Contact

search(a,18)

binarySearchH(a,0,8,18)

binarySearchH(a,5,8,18)

binarySearchH(a,5,5,18)

search(a,7)

binarySearchH(a,0,8,7)

binarySearchH(a,0,3,7)

binarySearchH(a,2,3,7)

binarySearchH(a,2,1,7)

Binary Search: Tracing

0 1 2 3 4 65 7 8
272421181512963a

0 1 2 3 4 65 7 8
272421181512963a

Binary Search: Running Time
Running Time as a
Recurrence Relation

T(0) =
T(1) =
T(n) =

sorted
from middle to

Running Time: Unfolding Recurrence Relation

T(0) = 1
T(1) = 1
T(n) = T(n/2) + 1

Merge Sort: Ideas

list

list.s
ize()

 - 1

list
.si
ze
()/
2

0 list
.si
ze
()/
2
- 1

Merge Sort in Java

merge

8524 6345
0

left

right 9617 5031

1 2 3

0 1 2 3

Merge Sort: Tracing
split
merge

Lecture 18 - March 20

Merge Sort, Quick Sort, BST

MergeSort: Recurrence Relation
QuickSort: Ideas, Java, RT

Announcements/Reminders

• ProgTest2 info & example questions released
• Assignment 3 (on linked Trees) solution released
• WrittenTest and ProgTest1 results & feedback released
• Makeup Lecture (on Queues) posted
• Lecture notes template, Office Hours, TA Contact

Merge Sort: Running Time
Running Time as a
Recurrence Relation

T(0) =
T(1) =
T(n) =

Running Time: Unfolding Recurrence Relation

T(0) = 1
T(1) = 1
T(n) = 2 · T(n/2) + n

Quick Sort: Ideas

list

list
.si
ze
()
- 1

0

Quick Sort in Java

list 85 24 63 45 17 31 96 50

left

right

Quick Sort: Tracing
split
concatenate

Running Time as a
Recurrence Relation

Quick Sort: Worst-Case Running Time

T(0) =
T(1) =
T(n) =

Running Time as a
Recurrence Relation

T(0) =
T(1) =
T(n) =

Quick Sort: Best-Case Running Time

Review Q & A - Mar. 21

Programming Test 2

Assignment 3 Solution

Generic Classes

Lecture 19 - March 25

Binary Search Trees

BST: Search Property
BST: Sorting Property
BST: Constructing BST Nodes

Announcements/Reminders

• Assignment 4 (on linked Trees) to be released
• ProgTest2 info & example questions released
• Assignment 3 (on linked Trees) solution released
• WrittenTest and ProgTest1 results & feedback released
• Makeup Lecture (on Queues) posted
• Lecture notes template, Office Hours, TA Contact

- external node
- internal node
+ LST
+ RST

Binary Search Trees: Recursive Definition

Is a Singleton BT a BST?

- BST: Non-Linear Structure
- In-Order Traversal

Binary Search Trees: Sorting Property

Building Sorted Seq. from In-Order Traversal on BST

Exercise: Checking the Search Property (1)
Remember: For a BT to be a BST, the Search Property
should hold recursively on the root of each subtree.

In-Order: <8, 17, 21, 28, 29, 32, 44, 54, 65, 76, 80, 82, 88, 93, 97>

Exercise: Checking the Search Property (2)
Remember: For a BT to be a BST, the Search Property
should hold recursively on the root of each subtree.

In-Order: <8, 17, 21, 28, 29, 32, 44, 54, 65, 76, 80, 82, 88, 93, 97>

Visual Summary: In-Order Traversal on BST

Generic, Binary Tree Nodes

Compare:
+ prev ref.

 + next ref.
in a DLN.

Generic, Binary Tree Nodes - Traversal

Tracing: Constructing and Traversing a BST

parent
key value
left right

parent
key value
left right

parent
key value
left right

parent
key value
left right

Lecture 20 - April 1

Binary Search Trees, Balanced BSTs

BST: Searching, Insertion
Hight Balance Property
Priority Queue: Introduction

Announcements/Reminders

• Assignment 4 (on linked Trees) released
• Makeup Lecture (for ProgTest2) to be posted
• Bonus opportunity: Final Course Evaluation
• Office hours 3pm Tue/Wed/Thu this week
• Lecture notes template, Office Hours, TA Contact

BST Operation: Searching a Key

Search key 65

Search key 68

Tracing: Searching through a BST

(28, “alan”)

(21, “mark”) (35, “tom”)

Running Time: Search on a BST

Binary Search: Non-Linear vs. Linear Structures

8

17

21

28

29

32

44

54

65

76

80

82

88

93

97

8 17 21 28 29 32 44 54 65 76 80 82 88 93 97
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Visualizing BST Operation: Insertion

Insert Entry (28, “suyeon”)

Insert Entry (68, “yuna”)

Worst-Case RT: BST with Linear Height
Example 1: Inserted Entries with Decreasing Keys

<100, 75, 68, 60, 50, 1>

Example 2: Inserted Entries with Increasing Keys
<1, 50, 60, 68, 75, 100>

Example 3: Inserted Entries with In-Between Keys
<1, 100, 50, 75, 60, 68>

- internal node
- height
- height balance

Balanced BST: Definition

Q. Is the above tree a balanced BST?
Q. Still a balanced BST after inserting 55?
Q. Still a balanced BST after inserting 63?

What is a Priority Queue (PQ)

Lecture 21 - April 3

Priority Queues, Heap, Heap Sort

PQ: List Implementations
Heap: Structure, Relational Properties
Heap: Insertion, Deletion
Heap Sort

Announcements/Reminders

• Assignment 4 (on linked Trees) released
• Makeup Lecture (for ProgTest2) to be posted
• Bonus opportunity: Final Course Evaluation
• Office hours 3pm Thu this week
• Office hours, review session, ex. questions to be releasd
• Lecture notes template, Office Hours, TA Contact

List-Based Implementations of Priority Queue (PQ)

(k1, v1) (ki, vi) (kj, vj) (kn, vn)

(k1, v1) (ki, vi) (kj, vj) (kn, vn)

Approach 1: Sorted List

Approach 2: Unsorted List

Heaps: Structural Properties of Nodes

Property: The tree is a complete Binary Tree

Heaps: Relational Properties of Keys

Property: Each non-root node n is s.t. key(n) ≥ key(parent(n))

Example Heaps

4

Example 1

4

Example 2

6

4

Example 5

6 8

4

Example 6

8 6

6

Example 3

4

4

Example 4

6

Heap Operations: Insertion

Insert a new entry (2, T)

Heap Operations: Deletion

Delete the root/minimum

Heap Sort: Ideas

a

a.siz
e() -

 1
0

Makeup Lecture (ProgTest1)

ADTs, Stacks

Abstract Data Types (ADTs)
2 1. arraigs2.SLLs 3 . DLLs clientesoblic of AT)

interface
supplier 1. /

> 1. assembled correctly. 2. time efficiency tintype to velt.a

eX/

Java API ≈ Abstract Data Types

ambiguitiesedictions
-

#
[

Stack ADT: Illustration

new stack

push(5)

push(3)

push(1)

pop

pop

pop

isEmpty size top

&

-a
->ToU

.

G. I pushed ineask

FI 5 #
I -

= ⑤
=

F Z 3
F 3 1-shed element

=

uti F 2 3r 2nd
lastelement (LIFO)

S red
= which off

3 F I 5 The=

Lona orders.bedpus

Implementing the Stack ADT in Java: Architecture

kotymohisinding
-> static type S2 :

FOP
unless

PLL

all operationis addaa S
D X-
- - all ops.

② inflexibleeta OLI

Implementing the Stack ADT using an Array
I ↓ ArrayStackString>

-

↳ instantiates E for Stack :

StaskString >
· (ETS) Object[]
-

O() ↳ whatou have to

OLD -
limitationfixed size write in Java.

O(1) -efficienttsTull
as the

top.

Implementing the Stack ADT using a SLL

Strategy 1

Strategy 2

proved to O()
in

if a DLLised
=- O(n)
j

-

↓ET
~

↓jtg
>

OCK
top.. "Jim"t,

t

i
top

Stack ADT: Testing Alternative Implementations
Stack<S> S=Stack();

*↳ interface can't
be a DT.

stati+
7 -

/

- *↓
& ~

gnanictypeI

DT: AS . &
~
Eversion

in As. (DT changes
↳ :

↑

**

-PTS ↓
version in 25

.class of Stack?

T *z is the DT of S a descendant · **
999

s : instanceof Stack T T
-
+ -

Setti s
.

instanceof Arraystack- &?LS Sch
"Mark" s instuctof LinkedStack E II

data -> She

Makeup Lecture (WrittenTest)

Queues, Circular Arrays, Deque

Queue ADT: Illustration

new queue

enqueue(5)

enqueue(3)

enqueue(1)

dequeue

dequeue

dequeue

isEmpty size first

front of G.
back ofg.

-ona
.

"55
~

= F 15

F 25
E

E F3 5
utr. 5 F Z 3

> First- In First-Out (FIFO)
oth. F I I

red . E T & U. A.

Implementing the Queue ADT in Java: Architecture

Implementing the Queue ADT using an ArrayShift
I un 999

--

-

:
-

-

O()
Ox Free
OD

<frondex
-> limitationeiting .

O(1)

7

:
-

S

· yO(n) toimpovethisfeea
snifing "editedherethear array

Implementing the Queue ADT using a SLL

Strategy 1

Strategy 2

O(u)
-

Duse SI instead

& use DLL instead

~ first gene .
↓

first quest

Stack ADT: Testing Alternative Implementations
V

I

dynaila
-

Polymorphism

Implementing the Queue ADT using a Circular Array

Phase 2: dequeue 2 times

Phase 3: enqueue 2 elements

Assume: A circular array of length 4.
Phase 0: Empty Queue q

0 1 2 3

Phase 1: enqueue 3 elements

data

0 1 2 3

data

0 1 2 3

data

0 1 2 3

data

size of quent vs . size of away % modulo 1
. fix-sized (no resizing(

2 . flexible for performing "dequere"
dataIf]=nulls f++ =

f=0 :
V=05 tom

11 T 1

Size : 3 -z==
fr Empty Queue? v= = f Ifgr-13 = ↓ f Vo&

(r-1) -f +1 Size of arra : size of3 18 4 fixed G .
(3+1)%4

&dataty = items
v= (r+ 1)%N

: V++5
-

-

I data[v] = items V++ =

alan mark tom empfore slotsbeforeindex .. 0.

T

+,0 1
size : vf 3 Yuna tom suffer-

Il Il 1 T

f Queue Full ? (v+D% v.
↳ v-fl +(42) [0

,
v-1] If s N-1]

- wher v points to 3. 4 Size : V<fD-OH ↓

is the only emptyslot . ↳ v+ (-f) = v 0f (N-1) -frIE

Makeup Lecture (ProgTest2)

BST Deletions, Constructing Heap,
Array-Based Implementations of BTs

Visualizing BST Operation: Deletion
Case 1: Delete Entry with Key 31

Case 2: Delete Entry with Key 80

Case 3: Delete Entry with Key 32

=> nothing.
Todelete -

2
+o <P

v

nar

orubtree:

W822829x&

Visualizing BST Operation: Deletion

Case 4.2: Delete Entry with Key 88

Case 4.1: Delete Entry with Key 17

In-Order Traversal
r

· ,
...

left-most n
.
iRST

P
-

LSTRST right-most node in 1ST

15t X
#
8d
=2 < P

↓
-

IST *
Er

rightmost Cases
in
1ST 8 M 2 -. .

657680893 ...

largest key that's smaller thanO

Top-Down Heap Construction

Exercise: Build a heap out of the following 15 keys:
<16, 15, 4, 12, 6, 7, 23, 20, 25, 9, 11, 17, 5, 8, 14>

Assumption: Key values supplied one at a time.

&T : # nodes level
* # up-heap
1+ 27 . I bubbling

c first insertedevel 2 root < logysteps
+ 22.2 logc

- Inlogt

O 2=) Level 0
~ /

b
*
x *** - 1 + by+ . (2+2+ - ..+2) DO 2 =2 level]

L4S
=I +by zn)n- 1)

000z4Level

d O(u . logn)
:

h

to Exercise : Complete inserting the
00 002

weelh

remaining kings to the heap.

Bottom-Up Heap Construction

Exercise: Build a heap out of the following 15 keys:
<16, 15, 4, 12, 6, 7, 23, 20, 25, 9, 11, 17, 5, 8, 14>

Assumption: Key values supplied all at once.

5%% Step 1
8 heaps , Size Is height o

16 15412677 2320

15. ↓z Step 2
& G

&
25% 17

D / /
&

·4 r I 727232
D 11

Steps: &

- -

12.5 Step3 4
6

& tentries
: *

z
+ =
i 3 15 S

⑮ is 25a
I

osit
-

- - ↑

->
Step -

7:

obeigtthe
- ·

-

Array-Based Representation of a Complete BT

1211109876543210

O :

Exercise
·Iv zi Le What if the BT

Levelz is not complete ?
·3

inflict
4right 6

(be for space util.).
T 8.9 · 10

.
11

.
12 Level Dindex : E

- # nodes:

&

Gl LZ
↳

(4 > () (5>A) (baz) (15sk) (93F) (TaR) (20s B) (16sX) (2535) (14
,E) (ligH) (lIgS) (BaW

